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Preface

This final report summarizes a research program performed by the

McDonnell Douglas Research Laboratories, St. Louis, Missouri, on unsteady

transonic flows in two-dimensional diffusers. The research was conducted

under Contract No. F49620-77-C-0082 for the Air Force of Scientific

Research. The performance period was 1 April 1977 to 31 March 1982.

The principal investigator was Dr. Miklos Sajben; Dr. Thomas J. Bogar and

Mr. Joseph C. Kroutil were coinvestigators. The program manager was Dr. James

D. Wilson, Air Force Office of Scientific Research.

This report has been reviewed and is approved.

R. 3. Hakkinen
Director-Research
McDonnell Douglas Research Laboratories

D. P. Ames
Staff Vice President
McDonnell Douglas Research Laboratories
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1. INTRODUCTION

The development of reliable theoretical prediction procedures for

supersonic inlet flows requires significant experimental contributions.

Detailed exploration of typical flowfields is necessary for establishing the

relative importance of various flow features for modeling purposes, and

extensive data sets are needed to verify theoretical predictions. Inlet

performance is limited by the appearance of undesirable fluctuations; there-

fore, the inclusion of unsteady phenomena in both theory and experiment is

necessary for the development of prediction methods that are applicable to a

wide range of flight conditions.

The present program uses nominally two-dimensional, supercritical

diffusers to simulate important supercritical inlet flow features. Two-

dimensionality greatly extends the range of applicable diagnostic techniques

and alleviates the difficulties of interpretation and analysis. At the same

time, the flowfields (typical examples shown in Figure 1) contain most essen-

tial elements of their real counterparts: a normal-shock-wave/turbulent-

boundary-layer interaction, a subsequent subsonic region with an adverse

pressure gradient, and rapidly thickening, usually separated boundary layers

which may merge well within the divergent section of the channel. Most of

these flow features are constantly subjected to intensive, but isolated

studies by many independent investigators. However, the interactive combi-

nation of such features displays important phenomena that involve the flow-

field as a whole (e.g., large-scale, coherent oscillations). Such collective

phenomena are often associated with severe technological problems and form the

focus of the present study.

The accomplishments of the program have been documented extensively

(Publications 1-5); the present report is restricted to a concise summary of

objectives and accomplishments.
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Figure 1. Three bask types of transonic diffuser flows.



2. OBJECTIVES

The overall objective of the program was a broad study of the structure

of transonic diffuser flows, including both time-mean and time-dependent

features. Since this class of flows has not received close attention in the

past, the study was necessarily exploratory.

The specific objectives of the contract are briefly stated as follows:

First Year

Build the hardware needed to vary the thickness of the boundary layer

approaching the throat of an MDRL diffuser model. Measure time-mean wall

pressure and exit velocity distributions. Measure wall pressure and exit

velocity fluctuations. Obtain high speed schlieren film-records of the flows.

Statistically analyze the data.

Second and Third Year

Build the hardware needed to modulate the exit area of a two-dimu nsional

diffuser model provided by MDRL. Obtain phase-averaged wall static pressure

and core flow static/total pressure distributions, as well as phase-averaged

shock-position histories. Analyze and document data.

Fourth Year

Build duct segments to vary the length of a diffuser provided by MDRL.

Determine natural frequencies from shock displacement spectra and core flow

lengths from internal distributions of total pressure. Develop a correlation

to predict natural frequencies.

Fifth Year

Analyze and document the data obtained in the first four years, with

special attention to the process of wave reflection at the shock, the apparent

absence of resonance in forced oscillatory tests, and the intermittent be-

havior characterizing the onset of shock-induced separation.

. ... I I 1 / 1 ' | - * .. . -3



3. DESCRIPTION OF EXPERIMENTS

Two different diffuser models were used: one with an exit-to-throat area

ratio (a) of 2.37 (referred to as model B, Figure 2 and Publications 1 and 2),

and another with a - 1.5 (referred to as model G, Figure 3, and Publications

2-5). Both were investigated over comparable ranges of the Mach number im-

mediately before the shock (Ma, from 1.1 to 1.4), which was found to be the

primary variable determining the character of the flow.

If Ma is over a configuration-dependent critical value (1.3 for model B
and 1.28 for model G), then shock-induced separation (SIS) occurs at the foot

of the shock (strong shock, Figure Ic, References 1-4). For shock Mach

numbers below 1.3 for model B and 1.27 for model G) the type of flow depends
on the model. In the case of the moderate-area-ratio model G, there was no

separation (NS) present on either wall (Figure la); in model B, with a con-

siderably greater area ratio, pressure-gradient-induced separation (PGIS)

occurred on the top wall at locations distinctly downstream of the shock

(Figure Ib) All investigated flows could be classified as one of the three

types shown in Figure 1.

The flow in model B exhausted directly to the laboratory, so that the

boundary condition over the exit cross section was closely characterized as

Schlieren system
outline

I1

- 229- "--- ,512- 306

Dimensions in millimeters Divergent section Constant area section

Throat

Figure 2. Diffuser Model B. Area ratio = 2.37.
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Figure 3. Diffuser model C with rotar) exciter. Area ratio= 1.5.

spatially and temporally constant static pressure. Model G could be operated

in the same way, or its exit cross-sectional area could be modulated at fre-

quencies up to 340 Hz using the rotary device shown in Figure 3, thereby

imposing an external, periodic perturbation on the flow. Unsteady flows

created by such controlled disturbances serve as computational test cases with

deterministic time-dependence, and also simulate oscillatory flows in ramjet

inlets driven by combustion instabilities.

As illustrated in Table 1, the six possible combinations formed by the

two types of boundary conditions (steady or periodic) and the three types of

flow patterns (NS, PGIS, and SIS in Figure 1) define six major classes of

flows, five of which were explored in this program.

The thickness of the initial boundary layer and the length of the

diffuser channel were additional test parameters.

Flow visualization by high-speed shadowgraph and schlieren photographic

methods has been used extensively thrcughout the program, providing valuable

characterization of the dynamics of the system. An MDRL-developed optical

system that indicates shock position in real time allowed a reliable spectral

LA'_I.



TABLE I. TYPES OF SUPERCRITICAL DIFFUSER FLOWS AND THE
MODELS (G, B) IN WHICH THEY OCCURRED.

Top-wall boundary layer Attached Separated

Shock Mach number Weak (< 1.28) Strong (> 1.3)

Designation (See Figure 1) NS PGIS SIS

Steady G B G, B
Exit
boundary
condition

Periodically modulated G -

GP21-0389.1

analysis of shock displacement fluctuations. Much dynamic pressure infor-

mation was acquired from wall-mounted static-pressure and immersed static/

total pressure sensors.

Figure 4 illustrates the types of data obtained, classifying them

according to their dependence on time. Random signals were treated by methods

of classical statistics, particularly by calculating power spectral density

distribution functions. Low-frequency peaks in these distributions identified

preferred (natural) oscillation frequencies, whose dependence on various test

parameters was of particular concern. Periodic oscillations occurred in model

G when excitation was applied; time-records obtained under these conditions

were subjected to averaging over many cycles to separate the periodic part of

the signal from random contributions. The periodic part, not generally sinu-

soidal, was Fourier-decomposed to determine the (generally dominant) first

harmonic. Unlike the noisy raw signals, the phase and amplitude of the first

harmonic components displayed clearly identifiable trends that could be com-

pared meaningfully with theoretical predictions.

6
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4. REVIEW OF RESULTS

A summary of research conducted under this contract is given in Table 2.

TABLE 2. CONTRACT SUMMARY.

Area of Investigation Contract year Documentation

Effect of initial boundary-layer thickness 1977/78 Publications (1), (2)

Effects of shock strength and duct length on 1980/81 Publication (3)
natural frequencies

Response of diffuser to periodic perturbations 1978/80 Publication (4)
imposed at the downstream end

Analysis of factors influencing time-mean distortion 1981/82 Publication (5)

Analysis of wave reflection and resonance effects 1981/82

4.1 Effect of Initial Boundary Layer Thickness

This study, conducted in the first year using model B (Publications I and

2), led to the following principal conclusions:

The influence of the approach boundary-layer thickness on nominally two-

dimensional transonic diffuser flows depends on shock strength.

If the Mach number before the shock is less than approximately 1.3, flow

separation occurs well downstream of the shock, i.e., separation is induced by

the adverse pressure gradient in the subsonic flow (PGIS). In this situation,

the boundary-layer thickness has a significant but moderate influence on both

the time-mean and fluctuating flow properties. As the boundary-layer dis-

placement thickness increases, separation occurs earlier, reattachment occurs

later, static and total pressure recoveries are reduced (Figure 5), and the

three-dimensional features of the flow are intensified. Shock displacement

amplitudes increase dramatically, but frequencies increase only slightly.

Surface pressure fluctuations change minimally.

Shock Mach numbers greater than approximately 1.3 involve a pressure jump

large enough to cause immediate separation (SIS). An increase of the initial

displacement thickness under this condition generally results in consequences

similar to those for weak shocks. However, the magnitude of the effects is

8
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Figure 5. Supercritical diffuser losses.

much smaller, and for several flow properties (e.g., surface pressure fluc-

tuation) there is virtually no effect.

One valuable byproduct of this investigation was the experimental

demonstration of earlier expectations that the wall pressure fluctuations

originate from two distinct mechanisms. One source is a large-scale fluc-

tuation that is coherent along most of the diffuser. This source accounts for

a large, low-frequency contribution near 100 Hz. The second source is the

local turbulence in the shear layer whose dominant frequency range varies

widely along the channel from = 6000 Hz near the shock to = 300 Hz near the

end of the divergent section. Except for low-frequency-dominated locations

near the shock, the two contributions are of comparable intensity.

The turbulence frequencies decrease in the streamwise direction, near the

duct end they are sufficiently low to interact with the large-scale, coherent
oscillation and are probably the reasons for its presence. Flows in model B,

therefore, contain large regions in which the time scales of turbulence and

the time scale for the unsteady mean motion are comparable. The time-

9



dependent theoretical description of flows in this class may therefore require

a model capable of describing at least some details of the large eddies in the

flow.

4.2 Factors Determining Natural Frequencies

This work was completed in the fourth year of the contract, using the

moderate-area-ratio model G. The results are documented in Publications 3 and

4. The diffuser displayed attached flows (NS) below a shock Mach number of

1.27 and a shock-induced separation (SIS) above 1.28, with an intermittent

transition between these limits. Broadband pressure and narrowband shock

displacement oscillations occurred at all conditions with relatively small

amplitudes compared with earlier experiments with model B and with other

larger area-ratio diffusers (Publication 5).

For attached flow, the natural frequencies in the unsteady shock motion

scale inversely with the shock-to-exhaust distance, which was varied from 15

to 30 throat heights. The mechanism of the oscillation is propagation of

acoustic waves along the channel in both directions. Modes up to the third

harmonic are observed. The -frequencies of these oscillations are well pre-

dicted by inviscid, one-dimensional, linearized (acoustic) calculations.

In case of shock-induced separation (SIS), both pressure and shock

displacement amplitudes are greater, and only one natural frequency is ob-

served. The natural frequency of this oscillation mode is independent of duct

length and is not predicted by acoustic theory; the responsible mechanism is

not clear. The frequency appears to scale with the length of the inviscid

core flow and is related to convective effects in the boundary layer

(Reference 5). The observations, however, also admit another explanation that

links the natural frequency to the low-pass-filter-like response of the ter-

minal shock as it reacts to the broadband pressure fluctuation environment

created by the highly turbulent, separated boundary layers.

4.3 Response to Periodic Perturbation Introduced at the Downstream End

This study was conducted in the second and third years of the contract,

using model G and the simple mechanical exciter illustrated in Figure 2. The

results are documented in Publication 4.

t0



The periodic pressure fluctuations were generally less than 2% of the
local static pressure throughout the diffuser. The amplitude and phase angle

distributions of the imposed pressure and velocity perturbations were cal-

culated from the data for several excitation frequencies, both with and with-

out shock-induced separation. A sample for the latter is shown in Figure 6.

The results show that neither the mean flow nor the time-mean value of

the naturally present fluctuation intensities is altered appreciably by the

superimposed perturbations. No obvious resonance effects were observed when
the excitation frequency was near any of the well-defined natural frequencies

determined from natural shock displacement spectra.

The character of the forced perturbation field depends on whether the

shock is weak (M < 1.27, NS) or strong (M > 1.28, SIS).

The determining factor is the type of the reflection of the impinging
pressure wave off the shock. In the weak shock case, there is no significant

reflection. Pressure waves propagate upstream with approximately the velocity

of acoustic waves (a - u), but there is no evidence in the pattern of a return

wave. In the strong shock case, the pressure perturbation pattern within the

channel shows significant, localized phase shifts coinciding with minima in

the pressure amplitude distribution. This behavior can occur only when the

reflection off the shock is significant.

o 1.189 40 0 0

4 A 1.247
c 1.267

3 r..% --------
fn.exp 

0 a00 0 0 0

e.theo 2

0 0

00

10 Is 20 25 30
L/h,

OP214MY~

Figre 6. Comparison of Model G maturai frequuces with one-
difensioual, acoustic predktons uing reflection
coefficliems for ph., normal shocks. L- diffur klth.
he throat helight.
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The interaction of perturbations with a normal shock (reflection) is com-

plex, depends on shock strength, and differs from the reflection process found

with natural oscillations. The findings justify the conclusion that reflec-

tion modeling is a key problem in the further development of prediction

methods suitable for engineering purposes.

These results may be dependent on the method of excitation employed. In

particular, the apparent lack of resonance may be attributed to the possi-

bility that asymmetric excitation leads to a mode of oscillation different

from the natural mode.

4.4 Wave Reflection at the Shock; Resonance

The fifth year of the contract was devoted to organizing and documenting

the large amount of experimental t-formation obtained in prior years, includ-

ing the streamlining of data files and the preparation of meeting papers and

journal articles. The material was also subjected to further analysis to

extract implicit information concerning selected, important physical mechan-

isms: wave reflection and resonance.

The appearance of related studies based on acoustic theory (Reference 10)

supplied a timely framework for the characterization of boundary conditions

represented by the terminal shock. After rederiving the results of Reference

10 (and correcting minor discrepancies), the theory was used to calculate the

complex reflection coefficients for a plane shock located in a mildly varying

area channel. The reflections are typically weak, amounting to less than 1%

of the incident wave for the present experiments. The shock is thus predicted

to act as a nearly anechoic termination which extracts almost all of the

energy contained in the incident wave. The loss of energy damps the

fluctuations.

The reflection coefficients were used to calculate the natural frequen-

cies of attached model G flows. The results agree with experimental data

within the experimental uncertainty (Figure 7).

12
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Figure 7. Streamwise distrbulion of amplitude and phase angle (W) for the first harmonics of static pressure (P = )p'/j)
and velocity (U = u° /i). Subscript m refers to midstream (within core flow) and u to upper wall. Model G,
M = 1.353, shock-induced separation present, f = 300 Hz.

For attached flows, the streamwise distributions of pressure perturbation

amplitudes in forced oscillation experiments agree well with the predictions

of acoustic theory, but velocity distributions show systematic deviations.

Considering all available information, the deviations are interpreted to re-

flect transverse, traveling waves in the boundary-layer/core flow interface.

Such motions are closely linked to vorticity perturbations that are not

represented by one-dimensional acoustic theory.

Undulations of the boundary layers are known to dominate the fluctuations

occurring in the SIS mode (Reference 5). Under such conditions, the pressure

and velocity perturbation amplitude patterns in the forced oscillation experi-

ments clearly indicate strong reflections at the shock. Absolute values of

the reflection coefficients are near unity, far beyond what could be attri-

buted to planar-shock/acoustic-wave interactions, both the perturbations and

their reflections from the shock strongly involve the wall boundary layers.

No simple physical model capable of correlating the experimentally observed

reflections was found.

The absence of a singular response to excitation near the natural fre-

quencies led to further examination of the conditions under which resonance

might occur in the investigated diffusers. The study used several simple

13



mathematical models for channel flow, approximating end-conditions, loss

mechanisms, and convective effects in various ways. Detailed consideration

was given to a perturbed form of the integral energy equation expressing the

fluctuating energy contained within the diffuser volume. The derived expres-

sions show the significance of the presence of a mean flow and the limited

applicability of the classical acoustic energy equation to the problem at

hand.

The conclusions of the study are briefly described as follows: the

concept of resonance is precisely defined in the context of continuous systems

described by the linearized wave equations, with or without some distributed

dissipation (damping). This clarity is lost if the system is influenced by

physical mechanisms other than wave propagation, described by a corresponding-

ly more complex mathematical formulation. The pressure/velocity perturbation

field investigated here significantly involves convection of inherently trans-

verse disturbances (vorticity), dissipation in intensely turbulent regions,

and possibly large losses of energy through the shock which forms the upstream

boundary of the region. These factors often dominate over wave propagation,

obscuring the concept of resonance. Discrete natural frequencies are replaced

by broad-band responses, and the choice of proper dimensionless parameters to

describe dynamic phenomena becomes difficult.

The conclusion is that a careful redefinition of the concept of resonance

is required, generalizing it to conditions that are significantly affected by

mechanisms other than wave-propagation. The formulation of such a definition

is a broad, basic question relevant to many compressible flows, and its study

was considered beyond the scope of this contract.

The question of resonance is relevant from the research point of view,

but finding the answer is not an absolute necessity in the development of a

given design. An adequate substitute for engineering purposes may be to

establish the maximum shock displacement and post-shock pressure fluctuation

amplitudes as functions of exit pressure amplitude and frequency. Suitable

nondimensional representations are discussed.

14
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5. SUMMARY

The significant accomplishments of this program are:

* definition of a fluid mechanical experiment that models dominant

features of supersonic inlet flowfields at a manageable level of

complexity and can be directly related to state-of-the-art theoretical

efforts;

* application of fluid mechanics research methods to characterize inlet-

like flowfields which are usually treated by engineering methods aimed

at determining overall performance;

• exploration of controlling parameters to an extent sufficient to

determine major dependencies, identify critical areas, and aid the

modeling process in constructing prediction methods;

• explicit consideration of large-scale natural fluctuations;

" exploration of dynamic response to controlled external perturbations

over a frequency range including the natural frequencies; and

" coordination of the experimental work with requirements of numerical
code development and generation of data suitable for verification of
codes for both steady and time-dependent flows (References 6-9).

15
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